Frekwensie van die lopende gemiddeld Filter Die frekwensieweergawe van 'n LTI stelsel is die DTFT van die impulsrespons, Die impulsrespons van 'n L - sample bewegende gemiddelde is sedert die bewegende gemiddelde filter is FIR, die frekwensieweergawe verminder om die eindige som Ons kan die baie nuttig identiteit gebruik om die frekwensie reaksie as waar ons toelaat dat AE minus jomega skryf. N 0, en M L minus 1. Ons kan belangstel in die omvang van hierdie funksie word ten einde te bepaal watter frekwensies te kry deur middel van die filter unattenuated en wat verswakte. Hier is 'n plot van die omvang van hierdie funksie lyk, vir L 4 (rooi), 8 (groen) en 16 (blou). Die horisontale as wissel van nul tot pi radiale per monster. Let daarop dat in al drie gevalle, die frekwensieweergawe het 'n laagdeurlaat kenmerk. 'N konstante komponent (nul frekwensie) in die insette gaan deur die filter unattenuated. Sekere hoër frekwensies, soos pi / 2, is heeltemal uitgeskakel word deur die filter. Maar, as die bedoeling was om 'n laagdeurlaatfilter ontwerp, dan het ons nie baie goed gedoen. Sommige van die hoër frekwensies is verswakte net met 'n faktor van ongeveer 1/10 (vir die 16 punt bewegende gemiddelde) of 1/3 (vir die vier punt bewegende gemiddelde). Ons kan baie beter as dit doen. Bogenoemde plot is geskep deur die volgende Matlab kode: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) H16 (1/16) (1-exp (-iomega16)) ./ (1-exp (-iomega)) plot (omega , ABS (H4) ABS (H8) ABS (H16)) as (0, PI, 0, 1) Kopiereg kopie 2000- - Universiteit van Kalifornië, BerkeleyComputing 'n lopende gemiddeld van 'n eenvoudige 1-D data vektor lyk eenvoudig genoeg. Trouens, die MATLAB dokumentasie vir 'n filter gelukkig beweer iets soos: Jy kan filter gebruik om 'n lopende gemiddelde vind sonder die gebruik van 'n for-lus. Hierdie voorbeeld vind die loop gemiddeld van 'n 16-element vektor, met behulp van 'n venster grootte van 3: Vir my doeleindes is daar twee irriterende dinge oor hierdie resultaat: uitset punt N is die gemiddeld van insette punte n - (windowSize-1)..n (dws nie-gesentreerde, soos blyk uit die horisontale verskuiwing) en punte aan die linkerkant van die beskikbare data word as nulle. FILTFILT handel oor beide kwessies, maar het ander nadele. Die deel van die Seinverwerking Gereedskap, en dit nie die geval goed gaan met Nans (wat Id soos uitgesluit van die gemiddelde). Sommige mense op Fex het natuurlik dieselfde frustrasies, maar dit lyk vir my vreemd dat daar iets van hierdie eenvoudige vereis persoonlike kode. Enigiets Im ontbreek hier gevra 10 Augustus 10 by 21:39 Hmm. is daar nog 'n manier om die padding doen en kry die gemiddelde blyk dat indien sê 3 dromme val oor die rand in vergelyking met 1, sal jy nodig het om pad met verskillende waardes ten einde die korrekte gemiddelde vir die eerste bin kry. Spesifiek, moet jy boekie met die gemiddelde van die geldige dromme, wat afhanklik is van die punt onder oorweging. So I39m nie seker dit is selfs moontlik met padding uitvoering Matt Mizumi 11 Augustus 10 by 4: 06I nodig om 'n bewegende gemiddelde bereken oor 'n data-reeks, binne 'n for-lus. Ek het na die bewegende gemiddelde te kry oor N9 dae. Die skikking Im rekenaar in 4-reeks van 365 waardes (M), wat op sy beurt is gemiddelde waardes van 'n ander stel data. Ek wil die gemiddelde waardes van my data te stip met die bewegende gemiddelde in een stuk. Ek googled 'n bietjie oor bewegende gemiddeldes en die conv bevel en gevind iets wat ek probeer implementeer in my code .: So basies, ek bereken my gemiddelde en plot dit met 'n (verkeerde) bewegende gemiddelde. Ek opgetel die WTS waarde regs af die MathWorks webwerf, so dit is nie korrek nie. (Bron: www. mathworks. nl/help/econ/moving-average-trend-estimation) My probleem is egter dat ek nie verstaan wat dit WTS is. Kan iemand verduidelik As dit iets te doen met die gewig van die waardes het: dit is ongeldig in hierdie geval. Alle waardes word geweeg dieselfde. En as ek doen dit heeltemal verkeerd, kan ek kry 'n paar hulp daarmee My opregte dank. gevra 23 September 14 aan 19:05 Die gebruik conv is 'n uitstekende manier om 'n bewegende gemiddelde implementeer. In die kode wat jy gebruik, WTS is hoeveel jy weeg elke waarde (as jy geraai). die som van daardie vektor moet altyd gelyk wees om een te wees. Indien u verkies om elke waarde gewig eweredig en doen 'n grote N bewegende filter dan sou jy wil doen Die gebruik van die geldige argument in conv sal lei tot wat minder waardes in Me as jy in M. Gebruik dieselfde as jy dit nie omgee die gevolge van nul padding. As jy die seinverwerking toolbox kan jy cconv gebruik as jy wil om te probeer 'n omsendbrief bewegende gemiddelde. Iets soos Jy moet die conv en cconv dokumentasie te lees vir meer inligting as jy reeds havent. Jy kan filter gebruik om 'n lopende gemiddelde vind sonder die gebruik van 'n for-lus. Hierdie voorbeeld vind die loop gemiddeld van 'n 16-element vektor, met behulp van 'n venster grootte van 5. 2) gladde as deel van die krommepassing Gereedskap (wat beskikbaar is in die meeste gevalle) jj glad (y) glad die data in die kolom vektor y die gebruik van 'n bewegende gemiddelde filter. Die resultate word in die kolom vektor jj. Die verstek span vir die bewegende gemiddelde is 5.Documentation Hierdie voorbeeld wys hoe om te gebruik bewegende gemiddelde filters en hermonstering om die effek van periodieke komponente van die tyd van die dag op uurlikse temperatuurlesings, isoleer asook verwyder ongewenste lyn geraas van 'n oop - lus spanning meting. Die voorbeeld toon ook hoe om die vlakke van 'n kloksein glad terwyl die behoud van die kante deur die gebruik van 'n mediaan filter. Die voorbeeld toon ook hoe om 'n Hampel filter gebruik om groot uitskieters verwyder. Motivering Smoothing is hoe ons ontdek belangrik patrone in ons data, terwyl die verlaat uit dinge wat onbelangrik (bv geraas) is. Ons gebruik filter om hierdie smoothing voer. Die doel van smoothing is om stadige veranderinge in waarde te produseer sodat sy makliker om tendense in ons data te sien. Soms wanneer jy insette data te ondersoek wat jy kan wens om die data te stryk ten einde 'n tendens in die sein te sien. In ons voorbeeld het ons 'n stel van temperatuurlesings in Celsius geneem elke uur by die Logan-lughawe vir die hele maand van Januarie 2011. Let daarop dat ons visueel die effek wat die tyd van die dag het aan die temperatuurlesings kan sien. As jy in die daaglikse temperatuur variasie oor die maand net belangstel, die uurlikse skommelinge net bydra geraas, wat die daaglikse variasies moeilik om te onderskei kan maak. Om die effek van die tyd van die dag verwyder, sou ons nou graag ons data glad met behulp van 'n bewegende gemiddelde filter. 'N bewegende gemiddelde filter in sy eenvoudigste vorm, 'n bewegende gemiddelde filter van lengte N neem die gemiddelde van elke N agtereenvolgende monsters van die golfvorm. Om 'n bewegende gemiddelde filter aan elke datapunt toepassing, bou ons koëffisiënte van ons filter sodat elke punt ewe is geweeg en dra 24/01 tot die totale gemiddelde. Dit gee ons die gemiddelde temperatuur oor elke tydperk van 24 uur. Filter Vertraging Let daarop dat die gefilterde uitset vertraag met sowat twaalf ure. Dit is te danke aan die feit dat ons bewegende gemiddelde filter het 'n vertraging. Enige simmetriese filter van lengte N sal 'n vertraging van (N-1) / 2 monsters het. Ons kan rekening vir die vertraging met die hand. Uittreksels van Gemiddeld Verskille Alternatiewelik, kan ons ook die bewegende gemiddelde filter gebruik om 'n beter skatting van hoe die tyd van die dag beïnvloed die algehele temperatuur verkry. Om dit te doen, in die eerste, trek die stryk data van die uurlikse temperatuur metings. Dan segment die differenced data in dae en neem die gemiddelde oor die hele 31 dae in die maand. Uittreksels van Peak Envelope Soms het ons ook graag 'n vlot wisselende skatting van hoe die hoogte - en laagtepunte van ons temperatuur sein verander daagliks. Om dit te doen, kan ons die koevert funksie gebruik om die uiterste hoogtepunte en laagtepunte bespeur oor 'n subset van die tydperk van 24 uur aan te sluit. In hierdie voorbeeld, verseker ons daar ten minste 16 uur tussen elke uiterste hoë en uiterste lae. Ons kan ook 'n gevoel van hoe die hoogte - en laagtepunte is trending deur die gemiddeld tussen die twee uiterstes kry. Geweegde Moving Gemiddelde filters Ander vorme van bewegende gemiddelde filters doen elke monster nie ewe gewig. Nog 'n algemene filter volg die binomiale uitbreiding van (1 / 2,1 / 2) n Hierdie tipe filter by benadering 'n normale kurwe vir groot waardes van n. Dit is nuttig vir die filter van hoë frekwensie geraas vir klein N. Om die koëffisiënte vind vir die binomiale filter, oprollen 1/2 1/2 met homself en dan iteratief oprollen die uitset met 1/2 1/2 'n voorgeskrewe aantal kere. In hierdie voorbeeld gebruik vyf totale iterasies. Nog 'n filter ietwat soortgelyk aan die Gaussiese uitbreiding filter is die eksponensiële bewegende gemiddelde filter. Hierdie tipe geweeg bewegende gemiddelde filter is maklik om op te rig en nie 'n groot venster grootte vereis. Jy pas 'n eksponensieel geweeg bewegende gemiddelde filter deur 'n alfa parameter tussen nul en een. 'N Hoër waarde van alfa sal minder glad nie. Zoom in op die lesings vir een dag. Kies jou CountryFIR filters, IIR filters, en die lineêre konstante-koëffisiënt verskilvergelyking Kousale bewegende gemiddelde (FIR) Comments nie Weve bespreek stelsels waarin elke monster van die produksie is 'n geweegde som van (sekere van die) die monsters van die insette. Kom ons neem 'n oorsaaklike geweegde som stelsel, waar oorsaaklike beteken dat 'n gegewe uitset monster hang net af van die huidige insette monster en ander insette vroeër in die ry. Nóg lineêre stelsels in die algemeen nie, en eindig impulsrespons stelsels in die besonder, moet oorsaaklike wees. Maar oorsaaklikheid is gerieflik vir 'n soort van analise wat op pad was om gou te verken. As ons simboliseer die insette as waardes van 'n vektor x. en die uitgange as die ooreenstemmende waardes van 'n vektor y. dan so 'n stelsel kan geskryf word as waar die b waardes quotweightsquot toegepas word om die huidige en vorige insette monsters om die huidige uitset monster te kry. Ons kan dink aan die uitdrukking as 'n vergelyking met die gelykaanteken wat beteken gelykes, of as 'n prosedurele onderrig, met die gelykaanteken wat beteken opdrag. Kom ons skryf die uitdrukking vir elke uitset monster as 'n MATLAB lus van opdrag state, waar x is 'n N-lengte vektor van insette monsters, en b is 'n M-lengte vektor van gewigte. Ten einde te gaan met die spesiale geval aan die begin, sal ons x insluit in 'n meer vektor xhat wie se eerste M-1 monsters is nul. Ons sal die geweegde opsomming vir elke y (N) as 'n innerlike produk te skryf, en sal 'n paar wysigings van die insette te doen (soos b omkeer) vir hierdie doel. Hierdie soort stelsel word dikwels bekend as 'n bewegende gemiddelde filter, vir ooglopende redes. Van ons vroeër besprekings, moet dit duidelik dat so 'n stelsel is lineêre en verskuiwing-invariante wees. Natuurlik sou dit baie vinniger wees om die MATLAB konvolusie funksie conv (gebruik) in plaas van ons mafilt (). In plaas van die oorweging van die eerste M-1 monsters van die insette tot nul, ons hulle kan oorweeg om dieselfde as die laaste M-1 monsters wees. Dit is dieselfde as die behandeling van die insette as periodieke. Wel gebruik cmafilt () as die naam van die funksie, 'n klein verandering van die vroeër mafilt () funksie. In die bepaling van die impulsrespons van 'n stelsel, is daar gewoonlik geen verskil tussen die twee, aangesien alle nie-aanvanklike monsters van die insette is nul: Aangesien 'n stelsel van hierdie aard is lineêre en skuif-invariante, ons weet dat die uitwerking daarvan op enige sinusgolf sal slegs volgens skaal en skuif dit. Hier is dit sake wat ons gebruik die omsendbrief weergawe Die sirkulêr-gekonvuleerde weergawe geskuif en afgeskaal 'n bietjie, terwyl die weergawe met gewone konvolusie verwring aan die begin. Kom ons kyk wat die presiese skalering en verskuiwing is deur die gebruik van 'n FFT: Beide toevoer en afvoer het amplitude net by frekwensies 1 en -1, wat is soos dit moet wees, aangesien die insette was 'n sinusgolf en die stelsel was lineêre. Die uitset waardes groter deur 'n verhouding van 10,6251 / 8 1,3281. Dit is die wins van die stelsel. Wat van die fase Ons moet net om te kyk waar die amplitude is nie-nul: Die insette het 'n fase van pi / 2, soos ons versoek. Die uitset fase verskuif met 'n bykomende 1,0594 (met teenoorgestelde teken vir die negatiewe frekwensie), of oor 1/6 van 'n siklus van die reg, soos ons kan sien op die grafiek. Nou kan probeer om 'n sinusgolf met dieselfde frekwensie (1), maar in plaas van amplitude 1 en fase pi / 2, Kom ons probeer amplitude 1,5 en fase 0. Ons weet dat net frekwensie 1 en -1 nie-nul amplitude sal hê, so laat net kyk na hulle: weereens die amplitude verhouding (15,9377 / 12,0000) is 1,3281 - en as vir die fase dit weer verskuif deur 1,0594 as hierdie voorbeelde is tipiese, kan ons die effek van ons stelsel (impulsrespons 0,1 0,2 voorspel 0,3 0,4 0,5) op enige sinusgolf met frekwensie 1 - die amplitude sal verhoog word met 'n faktor van 1,3281 en die (positiewe frekwensie) fase sal verskuif deur 1,0594. Ons kan gaan op na die uitwerking van hierdie stelsel op sinusoïede van ander frekwensies bereken deur dieselfde metodes. Maar daar is 'n baie makliker manier, en een wat die algemene punt vestig. Sedert (omsendbrief) konvolusie in die tydgebied beteken vermenigvuldiging in die frekwensiedomein, daaruit volg dat Met ander woorde, die DFT van die impulsrespons is die verhouding van die DFT van die uitset na die DFT van die insette. In hierdie verband die DFT koëffisiënte is komplekse getalle. Sedert ABS (C1 / C2) ABS (c1) / ABS (C2) vir alle komplekse getalle C1, C2, hierdie vergelyking vertel ons dat die amplitude spektrum van die impulsrespons altyd die verhouding van die amplitude spektrum van die uitset na wat sal wees van die insette. In die geval van die fase spektrum, hoek (C1 / C2) hoek (c1) - hoek (C2) vir alle C1, C2 (word met dien verstande dat fases verskil deur n2pi gelyk beskou). Daarom is die fase spektrum van die impulsrespons sal altyd die verskil tussen die fase spektra van die uitset en die insette (met alles wat regstellings deur 2pi is nodig om die resultaat tussen - pi en pi hou) wees. Ons kan die fase-effekte sien meer duidelik as ons oop maak die voorstelling van fase, dit wil sê as ons verskeie veelvoude voeg van 2pi as wat nodig is om die spronge wat geproduseer word deur die periodieke aard van die () funksie hoek te verminder. Hoewel die amplitude en fase gewoonlik gebruik vir grafiese en selfs 'n tabel aanbieding, want hulle is 'n intuïtiewe manier om te dink oor die gevolge van 'n stelsel op die verskillende frekwensie komponente van sy insette, die komplekse Fourier koëffisiënte is meer nuttig algebraïes, omdat hulle toelaat die eenvoudige uitdrukking van die verhouding die algemene benadering wat ons so pas gesien sal saam met arbitrêre filters van die tipe geskets, waarin elke uitset monster is 'n geweegde som van sommige stel insette monsters. Soos vroeër genoem, is hierdie dikwels genoem Eindige Impulse Response filters, omdat die impulsrespons is van beperkte omvang, of soms Moving Gemiddelde filters. Ons kan die frekwensieweergawe kenmerke van so 'n filter van die FFT van sy impulsrespons te bepaal, en ons kan ook nuwe filters met gewenste eienskappe te ontwerp deur IFFT van 'n spesifikasie van die frekwensieweergawe. Outoregressiewe (IIR) Filters Daar sal min punt in 'name vir FIR filters wees, tensy daar was 'n paar ander soort (e) om hulle te onderskei van, en so diegene wat bestudeer pragmatiek sal nie verbaas wees om te verneem dat daar wel nog 'n groot soort lineêre tyd-invariante filter. Hierdie filters is soms genoem rekursiewe omdat die waarde van die vorige uitsette (asook vorige insette) aangeleenthede, hoewel die algoritmes in die algemeen geskryf met behulp van iteratiewe konstrukte. Hulle word ook genoem Oneindige Impulse Response (IIR) filters, want in die algemeen hul reaksie op 'n impuls gaan op tot in ewigheid. Hulle word ook soms genoem outoregressiewe filters, omdat die koëffisiënte kan beskou word as die gevolg van doen lineêre regressie te sein waardes uit te druk as 'n funksie van vroeër sein waardes. Die verhouding van EIR en OIR filters kan duidelik gesien word in 'n lineêre konstante-koëffisiënt verskilvergelyking, dit wil sê die oprigting van 'n geweegde som van uitsette gelykstaande aan 'n geweegde som van insette. Dit is soos die vergelyking wat ons vroeër het vir die oorsaaklike FIR filter, behalwe dat bykomend tot die geweegde som van insette, ons het ook 'n geweegde som van uitsette. As ons wil hê om te dink aan dit as 'n prosedure vir die opwekking van uitset monsters, moet ons die vergelyking herrangskik om 'n uitdrukking vir die huidige uitset monster y (N) te kry, die aanneming van die konvensie dat 'n (1) 1 (soos deur skalering ander as en BS), ons kan ontslae te raak van die 1 / n (1) term: y (n) b (1) x (n) b (2) x (n-1). b (LW1) x (N-NB) - 'n (2) y (N-1) -. - 'N (Na1) y (N-na) As al die n (N) buiten 'n (1) is nul, dit verminder na ons ou vriend die oorsaaklike FIR filter. Dit is die algemene geval van 'n (kousale) LTI filter, en geïmplementeer word deur die MATLAB funksie filter. Kom ons kyk na die geval waar die ander as b b koëffisiënte (1) is nul (in plaas van die FIR geval, waar die n (N) is nul): In hierdie geval, die huidige uitset monster y (N) word bereken as 'n geweegde kombinasie van die huidige insette monster x (n) en die vorige uitset monsters y (n-1), y (n-2), ens Om 'n idee te kry van wat gebeur met sulke filters kry, kan ons begin met die geval waar: dit wil sê, die huidige uitset monster is die som van die huidige insette monster en die helfte van die vorige uitset monster. Wel neem 'n inset impuls deur 'n paar keer stappe, een op 'n slag. Dit moet duidelik op hierdie punt dat ons maklik 'n uitdrukking vir die nde uitset monster waarde kan skryf: dit is net (As MATLAB getel vanaf 0, sou dit eenvoudig .5n wees). Sedert wat ons berekening is die impulsrespons van die stelsel, het ons gedemonstreer deur 'n voorbeeld dat die impulsrespons, want dit kan hê oneindig baie nie-nul monsters. Om hierdie triviale eerste-orde filter in MATLAB te implementeer, kan ons gebruik filter. Die oproep sal lyk: en die resultaat is: Is hierdie besigheid eintlik nog lineêr Ons kan kyk na hierdie empiries: Vir 'n meer algemene benadering, oorweeg die waarde van 'n uitset monster y (N). Deur opeenvolgende vervanging kan ons dit skryf, want dit is net soos ons ou vriend die konvolusie-som vorm van 'n FIR filter, met die impulsrespons deur die uitdrukking .5k. en die lengte van die impulsrespons om oneindig. So dieselfde argumente wat ons gebruik om te wys dat FIR filters was lineêre sal nou hier van toepassing. Tot dusver dit mag lyk soos 'n groot bohaai oor nie veel nie. Wat is hierdie hele lyn van ondersoek goed vir Wel beantwoord hierdie vraag in fases, wat begin met 'n voorbeeld. Dit is nie 'n groot verrassing dat ons kan bereken 'n gemonsterde eksponensiële deur rekursiewe vermenigvuldiging. Kom ons kyk na 'n rekursiewe filter dat daar iets minder voor die hand liggend nie. Hierdie keer goed maak dit 'n tweede-orde filter, sodat die oproep om te filter van die vorm sal wees Kom stel die tweede uitset koëffisiënt a2 om -2cos (2pi / 40), en die derde uitset koëffisiënt A3 tot 1, en kyk na die impulsrespons. Nie baie nuttig as 'n filter, eintlik, maar dit genereer 'n gemonsterde sinusgolf (van 'n impuls) met drie vermenigvuldig-voeg per monster Ten einde te verstaan hoe en hoekom dit doen dit, en hoe rekursiewe filters kan ontwerp en in ontleed die meer algemene geval, moet ons terug te stap en 'n blik op 'n paar ander eienskappe van komplekse getalle, op pad na die begrip van die z-transform.
No comments:
Post a Comment